Single-walled carbon nanotube networks in conductive composite materials.
نویسندگان
چکیده
Electrically conductive composite materials can be used for a wide range of applications because they combine the advantages of a specific polymeric material (e.g., thermal and mechanical properties) with the electrical properties of conductive filler particles. However, the overall electrical behaviour of these composite materials is usually much below the potential of the conductive fillers, mainly because by mixing two different components, new interfaces and interphases are created, changing the properties and behaviours of both. Our goal is to characterize and understand the nature and influence of these interfaces on the electrical properties of composite materials. We have improved a technique based on the use of sodium carboxymethyl cellulose (CMC) to disperse single-walled carbon nanotubes (SWCNTs) in water, followed by coating glass substrates, and drying and removing the CMC with a nitric acid treatment. We used electron microscopy and atomic force microscopy techniques to characterize the SWCNT films, and developed an in situ resistance measurement technique to analyse the influence of both the individual components and the mixture of an epoxy/amine system on the electrical behaviour of the SWCNTs. The results showed that impregnating a SWCNT network with a polymer is not the only factor that affects the film resistance; air exposure, temperature, physical and chemical properties of the individual polymer components, and also the formation of a polymeric network, can all have an influence on the macroscopic electrical properties of the initial SWCNT network. These results emphasize the importance of understanding the effects that each of the components can have on each other before trying to prepare an efficient polymer composite material.
منابع مشابه
Investigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM
Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...
متن کاملSynthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite
In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...
متن کاملSynthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite
In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...
متن کاملFabrication of Photodetectors using Transparent Carbon Nanotube Films
Carbon nanotubes are promising nanoscale materials for novel electrical, mechanical, chemical, and biological device and sensors based on its outstanding properties. Single walled carbon nanotubes can be either semiconducting or metallic material depending on its structures. However, controlling the structure is quite challenging with current technologies. For the network formation of the singl...
متن کاملEnhancement of Carbon Nanotube Particle Distribution in PPS/PEEK/Carbon Nanotube Ternary Composites with Sausage-Like Structure
Carbon nanomaterial particles were selectively distributed in an incompatible and high-melting-temperature polymer blend interface, or in a particular phase, to obtain conductive composites. The composite products revealed poor morphology stability and mechanical performance due to processing several times. Poly(phenylene sulfide) (PPS) and poly(ether ether ketone) (PEEK) polymers with large di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 173 شماره
صفحات -
تاریخ انتشار 2014